Robotics is emerging as a promising approach to study animal behavior. Biologically-inspired robots can manipulate the behavior of live animals and are increasingly employed to uncover the underpinnings of sociality and mate choice in the animal realm. But behavioral variation between animals plays a critical role for their ecology and evolution, and ultimately it determines variation in the survival, growth, and reproduction of individuals. While the study of behavioral responses of animals toward their robotic counterparts dominates the literature, it remains largely untested whether the life-history strategies of live animals can be artificially manipulated with biologically-inspired robots. Recently, predator-mimicking robots allowed to successfully study antipredator responses of highly invasive fish in detail, revealing that costs of behavioral alternations induced by robotic predators can impact the health and survival of invaders. The evidence that biologically-inspired robots can undermine the ecological success of invasive animals opens the door to novel experimental analyses at the interface between robotics, ecology, and invasion biology.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit