Abstract
Identifying conditions that promote egalitarian major transitions, where unlike replicating units unite to form a higher-level unit, is an open problem with far-reaching implications. We propose that egalitarian major transitions can only begin in ecological communities that are conducive to them. To formalize this idea, we introduce the concept of “transition-ability”, which describes the extent to which a community is poised to undergo an egalitarian major transition. We hypothesize that transitionability is a property of ecological interaction networks, which represent the set of pairwise interactions among members of a community. Using a digital artificial ecology that simulates interactions between species based on a static interaction network, we test the transition-ability of interaction networks created by a range of graph-generation techniques, as well as some real-world ecological networks. To measure the extent to which a community is moving towards a major transition, we quantify the increase in community-level fitness relative to individual-level fitness across five different fitness proxies. We find that some network generation protocols produce more transitionable networks than others. In particular, interaction strengths (i.e. edge weights) have a substantial impact on transitionability, despite receiving low attention in the literature.