This paper presents EINCASM, a prototype system employing a novel framework for studying emergent intelligence in organisms resembling slime molds. EINCASM evolves neural cellular automata with NEAT to maximize cell growth constrained by nutrient and energy costs. These organisms capitalize physically simulated fluid to transport nutrients and chemical-like signals to orchestrate growth and adaptation to complex, changing environments. Our framework builds the foundation for studying how the presence of puzzles, physics, communication, competition and dynamic open-ended environments contribute to the emergence of intelligent behavior. We propose preliminary tests for intelligence in such organisms and suggest future work for more powerful systems employing EINCASM to better understand intelligence in distributed dynamical systems.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.