Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-1 of 1
Alexander Mikos
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2020, ALIFE 2020: The 2020 Conference on Artificial Life541-548, (July 13–18, 2020) doi: 10.1162/isal_a_00271
Abstract
PDF
The dynamics of an artificial tumor-immune – ecosystem after simulated radiation therapy (RT) was investigated. The system is represented by a model for a tumor – host-tissue system including repopulation, mutation, competition and interaction with antibodies and a perceptron used for antigen pattern recognition. The perceptron response governs the generation of antibodies. The system exhibit interesting dynamic aspects: A special focus of the presented work lies on the observed separation of the perceptron weights for tumor – and host tissue, After RT application, the weights for host tissue can evolve into negative values whereas tumor-related perceptron weights remain positive. The negative perceptron weights indicate an immune-suppressive effect after RT which is related to the host tissue. The applicability of the presented system to clinical treatment optimization is not possible and may remain strongly limited when refined. The matching with a real-world tumor-immune-ecosystem (in patient) is questionable and the chosen approach may be too simplistic. However, the idea of an immune system considered as a trainable perceptron offers new hypothesis for novel approaches to anti-cancer treatments, treatments of infectious diseases or even vaccination.