Skip Nav Destination
Close Modal
Update search
NARROW
Format
Date
Availability
1-1 of 1
Denis Boyer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. alif2016, ALIFE 2016, the Fifteenth International Conference on the Synthesis and Simulation of Living Systems338-339, (July 4–6, 2016) 10.1162/978-0-262-33936-0-ch056
Abstract
View Paper
PDF
This paper describes the way in which we have employed agent-based models to understand fission-fusion dynamics (FFD), a collective pattern of behavior in many social animals. Groups with a high degree of FFD split into subgroups that vary in size, cohesion and composition, often within short temporal scales. These dynamics are thought to be more complex than those of other species with cohesive, stable groups, leading to hypotheses about the origin of social intelligence. Also, a flexible grouping pattern is supposed to be an adaptive solution to the temporal and spatial variation in feeding resources. We have used models where relatively simple agents forage in realistic, heterogenous environments and have shown that, for intermediate levels of heterogeneity in the size of food patches, agents form subgroups that vary in size and composition in a similar fashion as they do in species with a high degree of FFD. We have also explored the idea that by splitting in subgroups that vary in size, animals can exploit a heterogeneous environment with ephemeral food sources more efficiently than cohesive groups. Agent-based models have provided ways to test hypotheses and develop predictions about social and ecological dynamics.