Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-1 of 1
Jamie Webster
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life54, (July 18–22, 2021) 10.1162/isal_a_00360
Abstract
View Paper
PDF
Crowd simulations are used extensively to study the dynamics of human collectives. Such studies are underpinned by specific movement models, which encode rules and assumptions about how people navigate a space and handle interactions with others. These models often give rise to macroscopic simulated crowd behaviours that are statistically valid, but which lack the noisy microscopic behaviours that are the signature of believable “real” crowds. In this paper, we use an existing “Turing test” for crowds to identify “lifelike” features of real crowds that are generally omitted from simulation models. Our previous study using this test established that untrained individuals have difficulty in classifying movies of crowds as “Real” or “Simulated”, and that such people often have an idealised view of how crowds move. In this follow-up study (with new participants) we perform a second trial, which now includes a training phase (showing participants movies of real crowds). We find that classification performance significantly improves after training, confirming the existence of features that allow participants to identify real crowds. High-performing individuals are able to identify the features of real crowds that should be incorporated into future simulations if they are to be considered “lifelike”.