Skip Nav Destination
Close Modal
Update search
NARROW
Format
TocHeadingTitle
Date
Availability
1-4 of 4
Lenz Belzner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life59, (July 18–22, 2021) 10.1162/isal_a_00369
Abstract
View Paper
PDF
A key challenge in AI is the development of algorithms that are capable of cooperative behavior in interactions involving multiple independent machines or individuals. Of particular interest are social dilemmas, which are situations that raise tension between an individual's best choice and the desirable outcome in terms of the group. Although such scenarios have been studied increasingly within the AI community recently, there are still many open questions on which aspects drive cooperative behavior in a particular situation. Based on the insights from behavioral experiments that have suggested positive effects of penalty mechanisms towards cooperation, in this work we adopt the notion of penalties by enabling independent and adaptive agents to penalize others. To that end, we extend agents’ action spaces with penalty actions and define a negative real-valued punishment value. We utilize reinforcement learning to simulate a process of repeated interaction between independent agents, learning by means of trial-and-error. Our evaluation considers different two player social dilemmas, and the N-player Prisoner's Dilemma with up to 128 independent agents, where we demonstrate that the proposed mechanism combined with decentralized learning significantly increases cooperation within all experiments.
Proceedings Papers
. isal2021, ALIFE 2021: The 2021 Conference on Artificial Life74, (July 18–22, 2021) 10.1162/isal_a_00399
Abstract
View Paper
PDF
This paper considers sustainable and cooperative behavior in multi-agent systems. In the proposed predator-prey simulation, multiple selfish predators can learn to act sustainably by maintaining a herd of reproducing prey and further hunt cooperatively for long term benefit. Since the predators face starvation pressure, the scenario can also turn in a tragedy of the commons if selfish individuals decide to greedily hunt down the prey population before their conspecifics do, ultimately leading to extinction of prey and predators. This paper uses Multi-Agent Reinforcement Learning to overcome a collapse of the simulated ecosystem, analyzes the impact factors over multiple dimensions and proposes suitable metrics. We show that up to three predators are able to learn sustainable behavior in form of collective herding under starvation pressure. Complex cooperation in form of group hunting emerges between the predators as their speed is handicapped and the prey is given more degrees of freedom to escape. The implementation of environment and reinforcement learning pipeline is available online.
Proceedings Papers
. isal2019, ALIFE 2019: The 2019 Conference on Artificial Life424-431, (July 29–August 2, 2019) 10.1162/isal_a_00197
Abstract
View Paper
PDF
The foundation of biological structures is self-replication. Neural networks are the prime structure used for the emergent construction of complex behavior in computers. We analyze how various network types lend themselves to self-replication. We argue that backpropagation is the natural way to navigate the space of network weights and show how it allows non-trivial self-replicators to arise naturally. We then extend the setting to construct an artificial chemistry environment of several neural networks.
Proceedings Papers
. isal2019, ALIFE 2019: The 2019 Conference on Artificial Life598-605, (July 29–August 2, 2019) 10.1162/isal_a_00226
Abstract
View Paper
PDF
In nature, flocking or swarm behavior is observed in many species as it has beneficial properties like reducing the probability of being caught by a predator. In this paper, we propose SELFish (Swarm Emergent Learning Fish), an approach with multiple autonomous agents which can freely move in a continuous space with the objective to avoid being caught by a present predator. The predator has the property that it might get distracted by multiple possible preys in its vicinity. We show that this property in interaction with self-interested agents which are trained with reinforcement learning solely to survive as long as possible leads to flocking behavior similar to Boids, a common simulation for flocking behavior. Furthermore we present interesting insights into the swarming behavior and into the process of agents being caught in our modeled environment.