Skip Nav Destination
Close Modal
Update search
NARROW
Format
Date
Availability
1-1 of 1
Martin Cenek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. alif2016, ALIFE 2016, the Fifteenth International Conference on the Synthesis and Simulation of Living Systems46-53, (July 4–6, 2016) 10.1162/978-0-262-33936-0-ch013
Abstract
View Paper
PDF
Detection and analysis of collective behavior in natural and artificial systems is a difficult task which is commonly delegated to a human observer. We present a statistical framework to automatically detect emergent, collective behavior of agents in agent based simulations which exhibit swarming and flocking behavior. Our tunable, transitional-, rotational-, and scale- invariant framework geometry of behavioral spaces identifies common behaviors among agents and translates these behaviors into a systems behavioral primitives, along with the agent transitions from one behavioral primitive to another. Finally, we use complex network analysis to detect collectives of agents that gravitate into a common cluster of behavioral primitives as the systems emergent behavior condenses or decays. We apply complex network theory to the analysis of collective behavior dynamics in the simulations of flocking and swarming to validate our analysis. Our framework does not use the knowledge of the parameter space that drive the models, and only relies on the temporal agent trajectories of exhibited behavior. The utility of detecting emergence from exhibited behavior makes this technique suitable as a fitness function for stochastic search algorithms, analyzing evolutionary dynamics of systems with collective behaviors, detecting structures in artificial chemistry experiments, or analyzing physical system such as bacterial formations.