Skip Nav Destination
Close Modal
Update search
NARROW
Format
Date
Availability
1-1 of 1
Zachary Serlin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. alif2016, ALIFE 2016, the Fifteenth International Conference on the Synthesis and Simulation of Living Systems528-535, (July 4–6, 2016) 10.1162/978-0-262-33936-0-ch085
Abstract
View Paper
PDF
A framework for predictively linking cell-level signaling with larger scale patterning in regeneration and growth has yet to be created within the field of regenerative biology. If this could be achieved, regeneration (controlled cell growth), cancer (uncontrolled cell growth), and birth defects (mispatterning of cell growth) could be more easily understood and manipulated. This paper looks to create a key part of this preliminary framework by using level set methods and a cellular control scheme to predict macroscopic regenerative morphology. This simulation specifically looks at Xenopus laevis tail regeneration, and uses three control regimes to collectively mimic biological regeneration. The algorithm shows promise in creating an abstracted model to predict cell patterning on a macroscopic level.