Skip Nav Destination
Close Modal
1-3 of 3
Neural Controllers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
. alife2018, ALIFE 2018: The 2018 Conference on Artificial Life327-334, (July 23–27, 2018) 10.1162/isal_a_00063
Abstract
View Paper
PDF
The evolution of robots, when applied to both the morphologies and the controllers, is not only a means to obtain highquality robot designs, but also a process that results in many body brain-fitness data points. Inspired by this perspective, in this paper we investigate the relative importance of robot bodies and brains for a good fitness. We introduce a method to isolate and quantify the effect of the bodies and brains on the quality of the robots and perform a case study. The method is general in that it is not restricted to evolutionary systems. for the case study, we use a system of modular robots, where the bodies are evolvable and the brains are evolvable and learnable. These case studies validate the usefulness of our method and deliver interesting insights into the interplay between bodies and brains in evolutionary robotics.
Proceedings Papers
. alife2018, ALIFE 2018: The 2018 Conference on Artificial Life319-326, (July 23–27, 2018) 10.1162/isal_a_00062
Abstract
View Paper
PDF
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a selfdetermined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.
Proceedings Papers
. alife2018, ALIFE 2018: The 2018 Conference on Artificial Life335-342, (July 23–27, 2018) 10.1162/isal_a_00064
Abstract
View Paper
PDF
Dung beetles can perform impressive multiple motor behaviors using their legs. The behaviors include walking and rolling a large dung ball on different terrains, e.g., level ground and different slopes. To achieve such complex behaviors for legged robots, we propose here a modular neural controller for dung beetle-like locomotion and object transportation behaviors of a dung beetle-like robot. The modular controller consists of several modules based on three generic neural modules. The main modules include 1) a neural oscillator network module (as a central pattern generator (CPG)), 2) a neural CPG postprocessing module (PCPG), 3) a velocity regulating network module (VRN). The CPG generates basic rhythmic patterns. The patterns are first shaped by the PCPG and their amplitudes as well as phases are later modified by the VRN to obtain proper motor patterns for locomotion and object transportation. Combining all these neural modules, we can achieve different motor patterns for four different actions which are forward walking, backward walking, levelground ball rolling, and sloped-ground ball rolling. All these actions can be activated by four input neurons. The experimental results show that the simulated dung beetle-like robot can robustly perform the actions. The average forward speed is 0.058 cm/s and the robot is able to roll a large ball (about 3 times of its body height and 2 times of its weight) up different slope angles up to 25 degrees.