Behavioral studies indicate that spatial and object working memory are computed by dissociable subsystems. We investigated the neural bases of this dissociation with a whole-brain fMRI design and analysis technique that permitted direct assessment of delay-period activity, uncontaminated by other components of the trial. The task employed a “what”-then-“where” design, with an object and a spatial delay period incorporated in each trial; within-trial order of delay conditions was balanced across each scan. Our experiment failed to find evidence, at the single-subject level and at the group level, for anatomical segregation of spatial and object working memory function in the frontal cortex. Delay-period activity in the caudate nucleus revealed a sensitivity to position in the trial in the spatial, but not the object, condition. In posterior regions, spatial delay-period activity was associated with preferential recruitment of extrastriate areas falling within Brodmann's area 19 and, less reliably, the superior parietal lobule. Object-specific delay-period activity was found predominantly in ventral regions of the posterior cortex and demonstrated more topographic variability across subjects than did spatial working memory activity.

This content is only available as a PDF.
You do not currently have access to this content.