In visual search, inefficient performance of human observers is typically characterized by a steady increase in reaction time with the number of array elements—the so-called set-size effect. In general, set-size effects are taken to indicate that processing of the array elements depends on limited-capacity resources, that is, it involves attention. Contrasting theories have been proposed to account for this attentional involvement, however. While some theories have attributed set-size effects to the intervention of serial attention mechanisms, others have explained set-size effects in terms of parallel, competitive architectures. Conclusive evidence in favor of one or the other notion is still lacking. Especially in view of the wide use of visual search paradigms to explore the functional neuroanatomy of attentional mechanisms in the primate brain, it becomes essential that the nature of the attentional involvement in these paradigms be clearly defined at the behavioral level. Here we report a series of experiments showing that highly inefficient search indeed recruits serial attention deployment to the individual array elements. In addition, we describe a number of behavioral signatures of serial attention in visual search that can be used in future investigations to attest a similar involvement of serial attention in other search paradigms. We claim that only after having recognized these signatures can one be confident that truly serial mechanisms are engaged in a given visual search task, thus making it amenable for exploring the functional neuro-anatomy underlying its performance.

This content is only available as a PDF.
You do not currently have access to this content.