The phenomenon of inhibition of return (IOR) has generated considerable interest in cognitive neuroscience because of its putative functional role in visual search, that of placing inhibitory tags on objects that have been recently inspected so as to direct further search to novel items. Many behavioral parameters of this phenomenon have been clearly delineated, and based on indirect but converging evidence, the widely held consensus is that the midbrain superior colliculus (SC) is involved in the generation of IOR. We had previously trained monkeys on a saccadic IOR task and showed that they displayed IOR in a manner similar to that observed in humans. Here we recorded the activity of single neurons in the superficial and intermediate layers of the SC while the monkeys performed this IOR task. We found that when the target was presented at a previously cued location, the stimulus-related response was attenuated and the magnitude of this response was correlated with subsequent saccadic reaction times. Surprisingly, this observed attenuation of activity during IOR was not caused by active inhibition of these neurons because (a) they were, in fact, more active following the presentation of the cue in their response field, and (b) when we repeated the same experiment while using the saccadic response time induced by electrical micro-stimulation of the SC to judge the level of excitability of the SC circuitry during the IOR task, we found faster saccades were elicited from the cued location. Our findings demonstrate that the primate SC participates in the expression of IOR; however, the SC is not the site of the inhibition. Instead, the reduced activity in the SC reflects a signal reduction that has taken place upstream.

This content is only available as a PDF.
You do not currently have access to this content.