Lesion, functional imaging, and single-unit studies in human and nonhuman animals have demonstrated a role for the amygdala in processing stimuli with emotional and social significance. We investigated the recognition of a wide variety of facial expressions, including basic emotions (e.g., happiness, anger) and social emotions (e.g., guilt, admiration, flirtatiousness). Prior findings with a standardized set of stimuli indicated that recognition of social emotions can be signaled by the eye region of the face and is disproportionately impaired in autism (Baron-Cohen, Wheelwright, & Jolliffe, 1997). To test the hypothesis that the recognition of social emotions depends on the amygdala, we administered the same stimuli to 30 subjects with unilateral amygdala damage (16 left, 14 right), 2 with bilateral amygdala damage, 47 brain-damaged controls, and 19 normal controls. Compared with controls, subjects with unilateral or bilateral amygdala damage were impaired when recognizing social emotions; moreover, they were more impaired in recognition of social emotions than in recognition of basic emotions, and, like previously described patients with autism, they were impaired also when asked to recognize social emotions from the eye region of the face alone. The findings suggest that the human amygdala is relatively specialized to process stimuli with complex social significance. The results also provide further support for the idea that some of the impairments in social cognition seen in patients with autism may result from dysfunction of the amygdala.

This content is only available as a PDF.
You do not currently have access to this content.