Abstract
Evidence suggests that in animals their own species-specific communication sounds are processed predominantly in the left hemisphere. In contrast, processing linguistic aspects of human speech involves the left hemisphere, whereas processing some prosodic aspects of speech as well as other not yet well-defined attributes of human voices predominantly involves the right hemisphere. This leaves open the question of hemispheric processing of universal (species-specific) human vocalizations that are more directly comparable to animal vocalizations. The present functional magnetic resonance imaging study addresses this question. Twenty subjects listened to human laughing and crying presented either in an original or time-reversed version while performing a pitch-shift detection task to control attention. Time-reversed presentation of these sounds is a suitable auditory control because it does not change the overall spectral content. The auditory cortex, amygdala, and insula in the left hemisphere were more strongly activated by original than by time-reversed laughing and crying. Thus, similar to speech, these nonspeech vocalizations involve predominantly left-hemisphere auditory processing. Functional data suggest that this lateralization effect is more likely based on acoustical similarities between speech and laughing or crying than on similarities with respect to communicative functions. Both the original and time-reversed laughing and crying activated more strongly the right insula, which may be compatible with its assumed function in emotional self-awareness.