Understanding the basic neural processes that underlie complex higher order cognitive operations and psychosocial functioning is a fundamental goal of cognitive neuroscience. Event-related potentials allow investigators to probe the earliest stages of information processing. Mismatch negativity (MMN) and P3a are auditory event-related potential components that reflect automatic sensory discrimination. The aim of the present study was to determine if MMN and P3a are associated with higher order cognitive operations and psychosocial functioning in clinically normal healthy subjects. Twenty adults were assessed using standardized clinical, cognitive, and psychosocial functional instruments. All individuals were within the normal range on cognitive tests and functional ratings. Participants were also tested on a duration-deviant MMN/P3a paradigm (50-msec standard tones, p = .90; 100-msec deviant tones, p = .10; stimulus onset asynchrony [SOA] = 505 msec). Across fronto-central electrode regions, significant correlations were observed between psychosocial functioning and MMN (r = −.62, p < .01) and P3a (r = .63, p < .01) amplitudes. P3a amplitude was also highly associated with immediate and delayed recall of verbal information with robust correlations widely distributed across fronto-central recording areas (e.g., r = .72, p < .001). The latency of the P3a response was significantly associated with both working memory performance (r = −.53, p < .05) and functional ratings (r = −.48, p < .05). Neurophysiological measures of relatively automatic auditory sensory information processing are associated with higher order cognitive abilities and psychosocial functioning in normal subjects. Efficiency at elementary levels of information processing may underlie the successful encoding, retrieval, and discrimination of task-relevant information, which, in turn, facilitates the iterative and responsive processing necessary for adaptive cognitive and social functioning.

This content is only available as a PDF.
You do not currently have access to this content.