In some contexts, concrete words (CARROT) are recognized and remembered more readily than abstract words (TRUTH). This concreteness effect has historically been explained by two theories of semantic representation: dual-coding [Paivio, A. Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255–287, 1991] and context-availability [Schwanenflugel, P. J. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (pp. 223–250). Hillsdale, NJ: Erlbaum, 1991]. Past efforts to adjudicate between these theories using functional magnetic resonance imaging have produced mixed results. Using event-related functional magnetic resonance imaging, we reexamined this issue with a semantic categorization task that allowed for uniform semantic judgments of concrete and abstract words. The participants were 20 healthy adults. Functional analyses contrasted activation associated with concrete and abstract meanings of ambiguous and unambiguous words. Results showed that for both ambiguous and unambiguous words, abstract meanings were associated with more widespread cortical activation than concrete meanings in numerous regions associated with semantic processing, including temporal, parietal, and frontal cortices. These results are inconsistent with both dual-coding and context-availability theories, as these theories propose that the representations of abstract concepts are relatively impoverished. Our results suggest, instead, that semantic retrieval of abstract concepts involves a network of association areas. We argue that this finding is compatible with a theory of semantic representation such as Barsalou's [Barsalou, L. W. Perceptual symbol systems. Behavioral & Brain Sciences, 22, 577–660, 1999] perceptual symbol systems, whereby concrete and abstract concepts are represented by similar mechanisms but with differences in focal content.

This content is only available as a PDF.
You do not currently have access to this content.