Abstract
In the orienting of attention paradigm, inhibition of return (IOR) refers to slowed responses to targets presented at the same location as a preceding stimulus. No consensus has yet been reached regarding the stages of information processing underlying the inhibition. We report the results of an electro-encephalogram experiment designed to examine the involvement of response inhibition in IOR. Using a cue-target design and a target-target design, we addressed the role of response inhibition in a location discrimination task. Event-related changes in beta power were measured because oscillatory beta activity has been shown to be related to motor activity. Bilaterally located sources in the primary motor cortex showed event-related beta desynchronization (ERD) both at cue and target presentation and a rebound to event-related beta synchronization (ERS) after movement execution. In both designs, IOR arose from an enhancement of beta synchrony. IOR was related to an increase of beta ERS in the target-target design and to a decrease of beta ERD in the cue-target design. These results suggest an important role of response inhibition in IOR.