Abstract
Object-related areas in the ventral visual system in humans are known from imaging studies to be preferentially activated by object images compared with noise or texture patterns. It is unknown, however, which features of the object images are extracted and represented in these areas. Here we tested the extent to which the representation of visual classes used object fragments selected by maximizing the information delivered about the class. We tested functional magnetic resonance imaging blood oxygenation level-dependent activation of highly informative object features in low- and high-level visual areas, compared with noninformative object features matched for low-level image properties. Activation in V1 was similar, but in the lateral occipital area and in the posterior fusiform gyrus, activation by “informative” fragments was significantly higher for three object classes. Behavioral studies also revealed high correlation between performance and fragments information. The results show that an objective class-information measure can predict classification performance and activation in human object-related areas.