Abstract
Animals and humans share an evolutionary ancient quantity representation which is characterized by analog magnitude features: Discriminating magnitudes becomes more difficult with increasing set sizes (size effect) and with decreasing distance between two numerosities (distance effect). Humans show these effects even with number symbols. We wondered whether monkeys would show the same psychophysical effects with numerical signs and addressed this issue by training three monkeys to associate visual shapes with numerosities. We then confronted the monkeys with trials in which they had to match these visual signs with each other. The monkeys' performance in this shape versus shape protocol was positively correlated with the numerical distance and the magnitudes associated with the signs. Additionally, the monkeys responded significantly slower for signs with higher assigned numerical values. These findings suggest that the numerical values imprint their analog magnitudes characteristics onto the associated visual sign in monkeys, an effect that we also found reflected in the discharges of prefrontal neurons. This provides evidence for a precursor of the human number symbol knowledge.