We investigated the neural basis of repetition priming (RP) during mathematical cognition. Previous studies of RP have focused on repetition suppression as the basis of behavioral facilitation, primarily using word and object identification and classification tasks. More recently, researchers have suggested associative stimulus-response learning as an alternate model for behavioral facilitation. We examined the neural basis of RP during mathematical problem solving in the context of these two models of learning. Brain imaging and behavioral data were acquired from 39 adults during novel and repeated presentation of three-operand mathematical equations. Despite wide-spread decreases in activation during repeat, compared with novel trials, there was no direct relation between behavioral facilitation and the degree of repetition suppression in any brain region. Rather, RT improvements were directly correlated with repetition enhancement in the hippocampus and the posteromedial cortex [posterior cingulate cortex, precuneus, and retrosplenial cortex; Brodmann's areas (BAs) 23, 7, and 30, respectively], regions known to support memory formation and retrieval, and in the SMA (BA 6) and the dorsal midcingulate (“motor cingulate”) cortex (BA 24d), regions known to be important for motor learning. Furthermore, improvements in RT were also correlated with increased functional connectivity of the hippocampus with both the SMA and the dorsal midcingulate cortex. Our findings provide novel support for the hypothesis that repetition enhancement and associated stimulus-response learning may facilitate behavioral performance during problem solving.

You do not currently have access to this content.