Abstract
Semantically reversible sentences are prone to misinterpretation and take longer for typically developing children and adults to comprehend; they are also particularly problematic for those with language difficulties such as aphasia or Specific Language Impairment. In our study, we used fMRI to compare the processing of semantically reversible and nonreversible sentences in 41 healthy participants to identify how semantic reversibility influences neuronal activation. By including several linguistic and nonlinguistic conditions within our paradigm, we were also able to test whether the processing of semantically reversible sentences places additional load on sentence-specific processing, such as syntactic processing and syntactic-semantic integration, or on phonological working memory. Our results identified increased activation for reversible sentences in a region on the left temporal–parietal boundary, which was also activated when the same group of participants carried out an articulation task which involved saying “one, three” repeatedly. We conclude that the processing of semantically reversible sentences places additional demands on the subarticulation component of phonological working memory.