Numerous studies have demonstrated that observers often fail to notice large changes in visual scenes, a phenomenon known as change blindness. Some experiments have suggested that phenomenological experience in change blindness experiments is more diverse than the common distinction between change detection and change blindness allows to resolve. Recently, it has been debated whether changes in visual scenes can be detected (“sensed”) without a corresponding perception of the changing object (“seeing”) and whether these phenomena build on fundamentally different perceptual processes. The present study investigated whether phenomenologically different perceptual processes such as sensing and seeing rely on different or similar neural processes. We studied ERP effects of visual change processing (as compared to change blindness) when observers merely detected the presence of a change (“sensing”) and when they identified the changing object in addition to detection (“seeing”). Although the visual awareness negativity (VAN)/selection negativity was similar for detection with and without identification, a change-related positivity and the N2pc contralateral to changes were found exclusively when the change was fully identified. This finding indicates that change identification requires perceptual and neural processes that are not involved in mere detection. In a second experiment, we demonstrated that the VAN and N2pc effects are similar to effects of selective attention in a visual search task. By contrast, the change-related positivity was specific for conscious processing of visual changes. The results suggest that changes can be detected (“sensed”) without perception of the changing object. Furthermore, sensing and seeing seem to rely on different neural processes and seem to constitute different types of visual perception. These findings bear implications for how different categories of visual awareness are related to different stages in visual processing.

You do not currently have access to this content.