The differences between erroneous actions that are consciously perceived as errors and those that go unnoticed have recently become an issue in the field of performance monitoring. In EEG studies, error awareness has been suggested to influence the error positivity (Pe) of the response-locked event-related brain potential, a positive voltage deflection prominent approximately 300 msec after error commission, whereas the preceding error-related negativity (ERN) seemed to be unaffected by error awareness. Erroneous actions, in general, have been shown to promote several changes in ongoing autonomic nervous system (ANS) activity, yet such investigations have only rarely taken into account the question of subjective error awareness. In the first part of this study, heart rate, pupillometry, and EEG were recorded during an antisaccade task to measure autonomic arousal and activity of the CNS separately for perceived and unperceived errors. Contrary to our expectations, we observed differences in both Pe and ERN with respect to subjective error awareness. This was replicated in a second experiment, using a modified version of the same task. In line with our predictions, only perceived errors provoke the previously established post-error heart rate deceleration. Also, pupil size yields a more prominent dilatory effect after an erroneous saccade, which is also significantly larger for perceived than unperceived errors. On the basis of the ERP and ANS results as well as brain–behavior correlations, we suggest a novel interpretation of the implementation and emergence of error awareness in the brain. In our framework, several systems generate input signals (e.g., ERN, sensory input, proprioception) that influence the emergence of error awareness, which is then accumulated and presumably reflected in later potentials, such as the Pe.

You do not currently have access to this content.