Abstract

A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects performed a mental rotation task that elicits imagined motion. We concurrently measured behavioral performance and neural activity with fMRI, enabling us to directly assess the effect of a perturbation of hV5/MT+ on other cortical areas involved in the mental rotation task. The activity in hV5/MT+ increased as more mental rotation was required, and the perturbation of hV5/MT+ affected behavioral performance as well as the neural activity in this area. Moreover, several regions in the posterior parietal cortex were also affected by this perturbation. Our results show that hV5/MT+ is required for imagined visual motion and engages in an interaction with parietal cortex during this cognitive process.

You do not currently have access to this content.