We investigated the neural substrates involved in visuo-haptic neuronal convergence using an additive-factors design in combination with fMRI. Stimuli were explored under three sensory modality conditions: viewing the object through a mirror without touching (V), touching the object with eyes closed (H), or simultaneously viewing and touching the object (VH). This modality factor was crossed with a task difficulty factor, which had two levels. On the basis of an idea similar to the principle of inverse effectiveness, we predicted that increasing difficulty would increase the relative level of multisensory gain in brain regions where visual and haptic sensory inputs converged. An ROI analysis focused on the lateral occipital tactile–visual area found evidence of inverse effectiveness in the left lateral occipital tactile–visual area, but not in the right. A whole-brain analysis also found evidence for the same pattern in the anterior aspect of the intraparietal sulcus, the premotor cortex, and the posterior insula, all in the left hemisphere. In conclusion, this study is the first to demonstrate visuo-haptic neuronal convergence based on an inversely effective pattern of brain activation.

You do not currently have access to this content.