Abstract
The mechanisms that underlie the integration of visual and goal-related signals for the production of saccades remain poorly understood. Here, we examined how spatial proximity of competing stimuli shapes goal-directed responses in the superior colliculus (SC), a midbrain structure closely associated with the control of visual attention and eye movements. Monkeys were trained to perform an oculomotor-capture task [Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. Influence of attentional capture on oculomotor control. Journal of Experimental Psychology. Human Perception and Performance, 25, 1595–1608, 1999], in which a target singleton was revealed via an isoluminant color change in all but one item. On a portion of the trials, an additional salient item abruptly appeared near or far from the target. We quantified how spatial proximity between the abrupt-onset and the target shaped the goal-directed response. We found that the appearance of an abrupt-onset near the target induced a transient decrease in goal-directed discharge of SC visuomotor neurons. Although this was indicative of spatial competition, it was immediately followed by a rebound in presaccadic activation, which facilitated the saccadic response (i.e., it induced shorter saccadic RT). A similar suppression also occurred at most nontarget locations even in the absence of the abrupt-onset. This is indicative of a mechanism that enabled monkeys to quickly discount stimuli that shared the common nontarget feature. These results reveal a pattern of excitation/inhibition across the SC visuomotor map that acted to facilitate optimal behavior—the short duration suppression minimized the probability of capture by salient distractors, whereas a subsequent boost in accumulation rate ensured a fast goal-directed response. Such nonlinear dynamics should be incorporated into future biologically plausible models of saccade behavior.