Patients with cerebellar stroke are impaired in procedural learning. Several different learning mechanisms contribute to procedural learning in healthy individuals. The aim was to compare the relative share of different learning mechanisms in patients and healthy controls. Ten patients with cerebellar stroke and 12 healthy controls practiced a visuomotor serial reaction time task. Learning blocks with high stimulus–response compatibility were exercised repeatedly; in between these, participants performed test blocks with the same or a different (mirror-inverted or unrelated) stimulus sequence and/or the same or a different (mirror-inverted) stimulus–response allocation. This design allowed to measure the impact of motor learning and perceptual learning independently and to separate both mechanisms from the learning of stimulus–response pairs. Analysis of the learning blocks showed that, as expected, both patients and controls improved their performance over time, although patients remained significantly slower. Analysis of the test blocks revealed that controls showed significant motor learning as well as significant visual perceptual learning, whereas cerebellar patients showed only significant motor learning. Healthy participants were able to use perceptual information for procedural learning even when the rule linking stimuli and responses had been changed, whereas patients with cerebellar lesions could not recruit this perception-based mechanism. Therefore, the cerebellum appears involved in the accurate processing of perceptual information independent from prelearned stimulus–response mappings.

You do not currently have access to this content.