Although the role of the hippocampus in spatial cognition is well accepted, it is unclear whether its involvement is restricted to the mnemonic domain or also extends to perception. We used fMRI to scan neurologically healthy participants during a scene oddity judgment task that placed no explicit demand on long-term memory. Crucially, a surprise recognition test was administered after scanning so that each trial could be categorized not only according to oddity accuracy but also according to subsequent memory. Univariate analyses showed significant hippocampal activity in association with correct oddity judgment, whereas greater parahippocampal place area (PPA) activity was observed during incorrect oddity trials, both irrespective of subsequent recognition performance. Consistent with this, multivariate pattern analyses revealed that a linear support vector machine was able to distinguish correct from incorrect oddity trials on the basis of activity in voxels within the hippocampus or PPA. Although no significant regions of activity were identified by univariate analyses in association with memory performance, a classifier was able to predict subsequent memory using voxels in either the hippocampus or PPA. Our findings are consistent with the idea that the hippocampus is important for processes beyond long-term declarative memory and that this structure may also play a role in complex spatial perception.

You do not currently have access to this content.