The temporal envelope of speech is important for speech intelligibility. Entrainment of cortical oscillations to the speech temporal envelope is a putative mechanism underlying speech intelligibility. Here we used magnetoencephalography (MEG) to test the hypothesis that phase-locking to the speech temporal envelope is enhanced for intelligible compared with unintelligible speech sentences. Perceptual “pop-out” was used to change the percept of physically identical tone-vocoded speech sentences from unintelligible to intelligible. The use of pop-out dissociates changes in phase-locking to the speech temporal envelope arising from acoustical differences between un/intelligible speech from changes in speech intelligibility itself. Novel and bespoke whole-head beamforming analyses, based on significant cross-correlation between the temporal envelopes of the speech stimuli and phase-locked neural activity, were used to localize neural sources that track the speech temporal envelope of both intelligible and unintelligible speech. Location-of-interest analyses were carried out in a priori defined locations to measure the representation of the speech temporal envelope for both un/intelligible speech in both the time domain (cross-correlation) and frequency domain (coherence). Whole-brain beamforming analyses identified neural sources phase-locked to the temporal envelopes of both unintelligible and intelligible speech sentences. Crucially there was no difference in phase-locking to the temporal envelope of speech in the pop-out condition in either the whole-brain or location-of-interest analyses, demonstrating that phase-locking to the speech temporal envelope is not enhanced by linguistic information.

You do not currently have access to this content.