Abstract

Neural substrates of memory control are engaged when participants encounter unexpected mnemonic stimuli (e.g., a new word when told to expect an old word). The present fMRI study (n = 18) employed the likelihood cueing recognition task to elucidate the role of functional connectivity (fcMRI) networks in supporting memory control processes engaged by these unexpected events. Conventional task-evoked BOLD analyses recovered a memory control network similar to that previously reported, comprising medial prefrontal, lateral prefrontal, and inferior parietal regions. These were split by their differential affiliation to distinct fcMRI networks (“conflict detection” and “confirmatory retrieval” networks). Subsequent ROI analyses clarified the functional significance of this connectivity differentiation, with “conflict” network-affiliated regions specifically sensitive to cue strength, but not to response confidence, and “retrieval” network-affiliated regions showing the opposite pattern. BOLD time course analyses corroborated the segregation of memory control regions into “early” conflict detection and “late” retrieval analysis, with both processes underlying the allocation of memory control. Response specificity and time course findings were generalized beyond task-recruited ROIs to clusters within the large-scale fcMRI networks, suggesting that this connectivity architecture could underlie efficient processing of distinct processes within cognitive tasks. The findings raise important parallels between prevailing theories of memory and cognitive control.

You do not currently have access to this content.