Abstract
Visual behavior is guided by memories from prior experience and knowledge of the visual scene. The hippocampal system (HC), in particular, has been implicated in the guidance of saccades: Amnesic patients, following damage to the HC, exhibit selective deficits in their gaze patterns. However, the neural circuitry by which mnemonic representations influence the oculomotor system remains unknown. We used a data-driven, network-based approach on directed anatomical connectivity from the macaque brain to reveal an extensive set of polysnaptic pathways spanning the extrastriate, posterior parietal and prefrontal cortices that potentially mediate the exchange of information between the memory and visuo-oculomotor systems. We additionally show how the potential for directed information flow from the hippocampus to oculomotor control areas is exceptionally high. In particular, the dorsolateral pFC and FEF—regions known to be responsible for the cognitive control of saccades—are topologically well positioned to receive information from the hippocampus. Together with neuropsychological evidence of altered gaze patterns following damage to the hippocampus, our findings suggest that a reconsideration of hippocampal involvement in oculomotor guidance is needed.