Choosing between smaller prompt rewards and larger later rewards is a common choice problem, and studies widely agree that frontostriatal circuits heavily innervated by dopamine are centrally involved. Understanding how dopamine modulates intertemporal choice has important implications for neurobiological models and for understanding the mechanisms underlying maladaptive decision-making. However, the specific role of dopamine in intertemporal decisions is not well understood. Dopamine may play a role in multiple aspects of intertemporal choices—the valuation of choice outcomes and sensitivity to reward delays. To assess the role of dopamine in intertemporal decisions, we tested Parkinson disease patients who suffer from dopamine depletion in the striatum, in either high (on medication, PDON) or low (off medication, PDOFF) dopaminergic states. Compared with both PDOFF and healthy controls, PDON made more farsighted choices and reduced their valuations less as a function of increasing time to reward. Furthermore, reduced discounting in the high dopaminergic state was robust across multiple measures, providing new evidence for dopamine's role in making decisions about the future.

You do not currently have access to this content.