Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity or dedifferentiation has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used fMRI to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole-brain patterns of activation that predicted item versus associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared with young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory.

You do not currently have access to this content.