In daily life, efficient perceptual categorization of faces occurs in dynamic and highly complex visual environments. Yet the role of selective attention in guiding face categorization has predominantly been studied under sparse and static viewing conditions, with little focus on disentangling the impact of attentional enhancement and suppression. Here we show that attentional enhancement and suppression exert a differential impact on face categorization supported by the left and right hemispheres. We recorded 128-channel EEG while participants viewed a 6-Hz stream of object images (buildings, animals, objects, etc.) with a face image embedded as every fifth image (i.e., OOOOFOOOOFOOOOF…). We isolated face-selective activity by measuring the response at the face presentation frequency (i.e., 6 Hz/5 = 1.2 Hz) under three conditions: Attend Faces, in which participants monitored the sequence for instances of female faces; Attend Objects, in which they responded to instances of guitars; and Baseline, in which they performed an orthogonal task on the central fixation cross. During the orthogonal task, face-specific activity was predominantly centered over the right occipitotemporal region. Actively attending to faces enhanced face-selective activity much more evidently in the left hemisphere than in the right, whereas attending to objects suppressed the face-selective response in both hemispheres to a comparable extent. In addition, the time courses of attentional enhancement and suppression did not overlap. These results suggest the left and right hemispheres support face-selective processing in distinct ways—where the right hemisphere is mandatorily engaged by faces and the left hemisphere is more flexibly recruited to serve current tasks demands.

You do not currently have access to this content.