Understanding the neural mechanisms underlying conscious perception has become a central endeavor in cognitive neuroscience. In theories of conscious perception, a stimulus gaining conscious access is usually considered as a discrete neuronal event to be characterized in time or space, sometimes referred to as a conscious “episode.” Surprisingly, the alternative hypothesis according to which conscious perception is a dynamic process has rarely been considered. Here, we discuss this hypothesis and its implications. We show how it can reconcile inconsistent empirical findings on the timing of the neural correlates of consciousness and make testable predictions. According to this hypothesis, a stimulus is consciously perceived for as long as it is recoded to fit an ongoing stream composed of all other perceived stimuli. We suggest that this “updating” process is governed by at least three factors (1) context, (2) stimulus saliency, and (3) observers' goals. Finally, this framework forces us to reconsider the typical distinction between conscious and unconscious information processing.

You do not currently have access to this content.