We have recently shown that the efficiency in stopping a response, measured using the stop signal task, is related to GABAA-mediated short-interval intracortical inhibition (SICI) in the primary motor cortex. In this study, we conducted two experiments on humans to determine whether training participants in the stop signal task within one session (Experiment 1) and across multiple sessions (Experiment 2) would increase SICI strength. For each experiment, we obtained premeasures and postmeasures of stopping efficiency and resting-state SICI, that is, during relaxed muscle activity (Experiment 1, n = 45, 15 male participants) and SICI during the stop signal task (Experiment 2, n = 44, 21 male participants). In the middle blocks of Experiment 1 and the middle sessions of Experiment 2, participants in the experimental group completed stop signal task training, whereas control participants completed a similar task without the requirement to stop a response. After training, the experimental group showed increased resting-state SICI strength (Experiment 1) and increased SICI strength during the stop signal task (Experiment 2). Although there were no overall behavioral improvements in stopping efficiency, improvements at an individual level were correlated with increases in SICI strength at rest (Experiment 1) and during successful stopping (Experiment 2). These results provide evidence of neuroplasticity in resting-state and task-related GABAA-mediated SICI in the primary motor cortex after response inhibition training. These results also suggest that SICI and stopping efficiency are temporally linked, such that a change in SICI between time points is correlated with a change in stopping efficiency between time points.

You do not currently have access to this content.