Objects, shown explicitly or held in mind internally, compete for limited processing resources. Recent studies have demonstrated that attention samples locations and objects rhythmically. Interestingly, periodic sampling not only operates over objects in the same scene but also occurs for multiple perceptual predictions that are held in attention for incoming inputs. However, how the brain coordinates perceptual predictions that are endowed with different levels of bottom–up saliency information remains unclear. To address the issue, we used a fine-grained behavioral measurement to investigate the temporal dynamics of processing of high- and low-salient visual stimuli, which have equal possibility to occur within experimental blocks. We demonstrate that perceptual predictions associated with different levels of saliency are organized via a theta-band rhythmic course and are optimally processed in different phases within each theta-band cycle. Meanwhile, when the high- and low-salient stimuli are presented in separate blocks and thus not competing with each other, the periodic behavioral profile is no longer present. In summary, our findings suggest that attention samples and coordinates multiple perceptual predictions through a theta-band rhythm according to their relative saliency. Our results, in combination with previous studies, advocate the rhythmic nature of attentional process.

You do not currently have access to this content.