Abstract

Perceptual decision-making has been shown to be influenced by reward expected from alternative options or actions, but the underlying neural mechanisms are currently unknown. More specifically, it is debated whether reward effects are mediated through changes in sensory processing, later stages of decision-making, or both. To address this question, we conducted two experiments in which human participants made saccades to what they perceived to be either the first or second of two visually identical but asynchronously presented targets while we manipulated expected reward from correct and incorrect responses on each trial. By comparing reward-induced bias in target selection (i.e., reward bias) during the two experiments, we determined whether reward caused changes in sensory or decision-making processes. We found similar reward biases in the two experiments indicating that reward information mainly influenced later stages of decision-making. Moreover, the observed reward biases were independent of the individual's sensitivity to sensory signals. This suggests that reward effects were determined heuristically via modulation of decision-making processes instead of sensory processing. To further explain our findings and uncover plausible neural mechanisms, we simulated our experiments with a cortical network model and tested alternative mechanisms for how reward could exert its influence. We found that our experimental observations are more compatible with reward-dependent input to the output layer of the decision circuit. Together, our results suggest that, during a temporal judgment task, reward exerts its influence via changing later stages of decision-making (i.e., response bias) rather than early sensory processing (i.e., perceptual bias).

You do not currently have access to this content.