Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top–down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.

You do not currently have access to this content.