Abstract
Precise timing is crucial for many behaviors ranging from conversational speech to athletic performance. The precision of motor timing has been suggested to result from the strength of phase–amplitude coupling (PAC) between the phase of alpha oscillations (α, 8–12 Hz) and the power of beta activity (β, 14–30 Hz), herein referred to as α–β PAC. The amplitude of β oscillations has been proposed to code for temporally relevant information and the locking of β power to the phase of α oscillations to maintain timing precision. Motor timing precision has at least two sources of variability: variability of timekeeping mechanism and variability of motor control. It is ambiguous to which of these two factors α–β PAC should be ascribed: α–β PAC could index precision of stopwatch-like internal timekeeping mechanisms, or α–β PAC could index motor control precision. To disentangle these two hypotheses, we tested how oscillatory coupling at different stages of a time reproduction task related to temporal precision. Human participants encoded and subsequently reproduced a time interval while magnetoencephalography was recorded. The data show a robust α–β PAC during both the encoding and reproduction of a temporal interval, a pattern that cannot be predicted by motor control accounts. Specifically, we found that timing precision resulted from the trade-off between the strength of α–β PAC during the encoding and during the reproduction of intervals. These results support the hypothesis that α–β PAC codes for the precision of temporal representations in the human brain.