A central objective in the study of volition has been to identify how changes in neural activity relate to voluntary—“free will”—movement. The readiness potential (RP) is observed in the EEG as a slow-building signal that precedes action onset. Many consider the RP as a marker of an underlying preparatory process for initiating voluntary movement. However, the RP may emerge from ongoing slow-wave brain oscillations that influence the timing of movement initiation in a phase-dependent manner. Transcranial alternating current stimulation (tACS) enables brain oscillations to be entrained at the frequency of stimulation. We delivered tACS at a slow-wave frequency over frontocentral motor areas while participants (n = 30) performed a simple, self-paced button press task. During the active tACS condition, participants showed a tendency to initiate actions in the phase of the tACS cycle that corresponded to increased negative potentials across the frontocentral motor region. Comparisons of premovement EEG activity observed over frontocentral and central scalp electrodes showed earlier onset and increased amplitude of RPs from active stimulation compared with sham stimulation. This suggests that movement-related activity in the brain can be modulated by the delivery of weak, nonconsciously perceptible alternating currents over frontocentral motor regions. We present novel findings that support existing theories, which suggest the timing of voluntary movement is influenced by the phase of slow-changing oscillating brain states.

You do not currently have access to this content.