Abstract
Cognitive conflicts typically arise in situations that call for sudden changes in our behavior. Resolving cognitive conflicts is challenging and prone to errors. Humans can improve their chances to successfully resolve conflicts by mentally preparing for potential behavioral adjustments. Previous studies indicated that neural theta oscillations (4–7 Hz), as well as alpha oscillations (8–14 Hz), are reflective of cognitive control processes during conflict resolution. However, the role or neural oscillations for conflict preparation is still unclear. Therefore, the aim of the current study was to determine which oscillatory changes during conflict preparation predict subsequent resolution success. Participants performed a cued change-signal task, in which an anticipatory cue indicated if the upcoming trial might contain a cognitive conflict or not. Oscillatory activity was assessed via EEG. Cues that indicated that a conflict might arise compared with cues that indicated no conflict led to increases, directly followed by decreases, in theta power, as well as to decreases in alpha power. These cue-induced changes in theta and alpha oscillations occurred widespread across the cortex. Importantly, successful compared with failed conflict trials were characterized by selective increases in frontal theta power, as well as decreases in posterior alpha power during preparation. In addition, higher frontal theta power and lower posterior alpha power during preparation predicted faster conflict resolution. Our study shows that increases in frontal theta power, as well as decreases in posterior alpha power, are markers of optimal preparation for situations that necessitate flexible changes in behavior.