How susceptible a memory is to later modification might depend on how stable the episode has been encoded. This stability was proposed to increase when retrieving information more (vs. less) often and in a spaced (vs. massed) practice. Using fMRI, we examined the effects of these different pre-fMRI retrieval protocols on the subsequent propensity to learn from episodic prediction errors. After encoding a set of different action stories, participants came back for two pre-fMRI retrieval sessions in which they encountered original episodes either two or eight times in either a spaced or a massed retrieval protocol. One week later, we cued episodic retrieval during the fMRI session by using original or modified videos of encoded action stories. Recurrent experience of modified episodes was associated with increasing activity in the episodic memory network including hippocampal and cortical areas, when leading to false memories in a post-fMRI memory test. While this observation clearly demonstrated learning from episodic prediction errors, we found no evidence for a modulatory effect of the different retrieval protocols. As expected, the benefit of retrieving an episode more often was reflected in better memory for originally encoded episodes. In addition, frontal activity increased for episodic prediction errors when episodes had been less frequently retrieved pre-fMRI. A history of spaced versus massed retrieval was associated with increased activation throughout the episodic memory network, with no significant effect on behavioral performance. Our findings show that episodic prediction errors led to false memories. The history of different retrieval protocols was reflected in memory performance and brain responses to episodic prediction errors, but did not interact with the brain's episodic learning response.

You do not currently have access to this content.