Although in many cases salient stimuli capture attention involuntarily, it has been proposed recently that under certain conditions, the bottom–up signal generated by such stimuli can be proactively suppressed. In support of this signal suppression hypothesis, ERP studies have demonstrated that salient stimuli that do not capture attention elicit a distractor positivity (PD), a putative neural index of suppression. At the same time, it is becoming increasingly clear that regularities across preceding search episodes have a large influence on attentional selection. Yet to date, studies in support of the signal suppression hypothesis have largely ignored the role of selection history on the processing of distractors. The current study addressed this issue by examining how electrophysiological markers of attentional selection (N2pc) and suppression (PD) elicited by targets and distractors, respectively, were modulated when the search target randomly varied instead of being fixed across trials. Results showed that although target selection was unaffected by this manipulation, both in terms of manual response times, as well as in terms of the N2pc component, the PD component was reliably attenuated when the target features varied randomly across trials. This result demonstrates that the distractor PD, which is typically considered the marker of selective distractor processing, cannot unequivocally be attributed to suppression only, as it also, at least in part, reflects the upweighting of target features.

You do not currently have access to this content.