Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.

You do not currently have access to this content.