Abstract
Tasks that are easy when performed in isolation become difficult when performed simultaneously in the upper and/or lower limbs. This observation points to basic CNS constraints in the organization of patterns of interlimb coordination. The present studies provide evidence for the existence of two basic coordinative constraints whose effects may be additive under certain conditions. On one hand, the egocentric constraint denotes a general preference for moving the limbs toward or away from the longitudinal axis of the body in a symmetrical fashion and is of primary importance during the coordination of homologous limbs. On the other hand, the allocentric constraint refers to a general preference to move the limbs in the same direction in extrinsic space and pertains to the coordination of nonhomologous limbs (eg., various combinations of the upper and lower limbs). In the present context, constraints are considered as expressions of basic features of CNS operation that give way to preferred coordination patterns to which the system is naturally drawn or biased. The identification and description of these constraints is considered of critical importance to obtain a better understanding of the control of coordination patterns.