Abstract
Readers routinely draw inferences with remarkable efficiency and seemingly little cognitive effort. The present study was designed to explore different types of inferences during the course of reading, and the potential effects of differing levels of working memory capacity on the likelihood that inferences would be made. The electroencephalogram (EEG) was recorded from five scalp sites while participants read 90 paragraphs, composed of 60 experimental paragraphs and 30 filler paragraphs. Each experimental paragraph was four sentences long, and the final sentence stated explicitly the inference that readers did or did not make. There were four types of experimental paragraphs: (1) Bridging inference, (2) Elaborative inference, (3) Word-Based Priming control, and (4) No Inference control. Participants were tested using the Daneman and Carpenter (1980) Reading Span Task and categorized as having low or high working memory capacity. The average peaks of the N400 component of the event-related brain potential (EM) were used as a measure of semantic priming and integration, such that the lower the N400 was in response to the explicitly stated inference concept, the more likely it was that the reader made the inference. Results indicate that readers with high working memory capacity made both bridging (necessary) and elaborative (optional) inferences during reading, whereas readers with low working memory capacity made only bridging inferences during reading. We interpret the findings within the framework of the Capacity Constrained Comprehension model of Just and Carpenter (1992).