Human faces and bodies represent various socially important signals. Although adults encounter numerous new people in daily life, they can recognize hundreds to thousands of different individuals. However, the neural mechanisms that differentiate one person from another person are unclear. This study aimed to clarify the temporal dynamics of the cognitive processes of face and body personal identification using face-sensitive ERP components (P1, N170, and N250). The present study performed three blocks (face–face, face–body, and body–body) of different ERP adaptation paradigms. Furthermore, in the above three blocks, ERP components were used to compare brain biomarkers under three conditions (same person, different person of the same sex, and different person of the opposite sex). The results showed that the P1 amplitude for the face–face block was significantly greater than that for the body–body block, that the N170 amplitude for a different person of the same sex condition was greater than that for the same person condition in the right hemisphere only, and that the N250 amplitude gradually increased as the degree of face and body sex–social categorization grew closer (i.e., same person condition > different person of the same sex condition > different person of the opposite sex condition). These results suggest that early processing of the face and body processes the face and body separately and that structural encoding and personal identification of the face and body process the face and body collaboratively.

This content is only available as a PDF.
You do not currently have access to this content.