The predictability of a stimulus can be characterized by its transitional probability. Perceptual expectations derived from the transitional probability of the stimulus were found to modulate the early alpha oscillations in the sensory regions of the brain when neural responses to expected versus unexpected stimuli were compared. The objective of our study was to find out the extent to which this low-frequency oscillation reflects stimulus predictability. We aimed to detect the alpha-power difference with smaller differences in transitional probabilities by comparing expected stimuli with neutral ones. We studied the effect of expectation on perception by applying an unsupervised visual statistical learning paradigm with expected and neutral stimuli embedded in an image sequence while recording EEG. Time–frequency analysis showed that expected stimuli elicit lower alpha power in the window of 8–12 Hz and 0–400 msec after stimulus presentation, appearing in the centroparietal region. Comparing previous findings of expectancy-based alpha-band modulation with our results suggests that early alpha oscillation shows an inverse relationship with stimulus predictability. Although current data are insufficient to determine the origin of the alpha power reduction, this could be a potential sign of expectation suppression in cortical oscillatory activity.

This content is only available as a PDF.
You do not currently have access to this content.